Архив публикаций
Проверить непрерывность функции
Функция \(y=f\left(x \right)\), определенная на интервале \(\left(a,b \right)\) называется непрерывной в точке \(x_{0}\in \left(a,b \right)\), е ... »
[0]
[14900]
[ +13 ]
Нахождение пределов
Постоянная \(b\) называется пределом функции \(y=f\left(x \right)\) при \(x\rightarrow a\), если для любого числа \(\varepsilon >0\) существует т ... »
[0]
[1405]
[ +6 ]
Нахождение производных
Производной функции \(y=f\left(x \right)\) в точке \(x_{0}\) называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремиться к нулю: ... »
[0]
[1560]
[ +12 ]
Частные производные и производные по направлению
Рассмотрим функцию двух переменных \(z=f\left(x,y \right)\). Зафиксируем один из ее аргументов, например \(y\), положив \(y=y_{0}\). Тогда функция \(z=f\lef ... »
[0]
[1507]
[ +4 ]
Нахождение неопределенных интегралов
Первообразной функцией от заданной функции \(f\left(x \right)\) называется функция, производная которой равна данной функции, или что то же самое, дифференциал которой равен выраже ... »
[0]
[1299]
[ +4 ]
Вычисление определенных и несобственных интегралов
Пусть функция \(f\left(x \right)\) определена на отрезке \(\left[a,b \right]\). Разобьем \(\left[a,b \right]\) на \(n\) частей точками \ ... »
[0]
[1655]
[ +15 ]
Вычисление кратных интегралов
На координатной плоскости \(Oxy\) рассмотрим область \(S\), ограниченную замкнутой кривой. Пусть в области \(S\) определена фнкция \(z=f\left(x,y \right)\). ... »
[0]
[1510]
[ +7 ]
Численное интегрирование
Численное интегрирование - вычисление приближённого значения определённого интеграла. Численное интегрирование применяется в случаях, когда подынтегральная функция не задана аналитически, или когд ... »
[0]
[1351]
[ +4 ]
Решение дифуравнений
Дифференциальным уравнением называется уравнение относительно неизвестной функции и ее производных различных порядков. Порядком дифференциального уравнения называется порядок старшей производной, ... »
[0]
[1633]
[ +13 ]
|